**Electronic Displays** 



# Display Metrology of Electronic Displays



#### Karlheinz Blankenbach

| Prof. Dr. Karlheinz Blankenbach |
|---------------------------------|
| Pforzheim University            |
| Tiefenbronner Str. 65           |
| D-75175 Pforzheim, Germany      |

| Phone | e : +49 7231 - 28 - 6658 |
|-------|--------------------------|
| Fax   | : +49 7231 - 28 - 6060   |
| Email | : kb@displaylabor.de     |
| Web   | : www.displaylabor.de    |

Blankenbach / www.displaylabor.de / Display Metrology / WS 2013

IT



#### **Overview**



- Basic Parameters (Merits)
- Common Issues
- Display Technology Dependent Issues (Shortcomings)
- Summary
- Appendix: Additional information, methods etc. not relevant for exam



# **Goal of Display Metrology Lecture**



#### Why?

- Displays are at first hand selected by specifications from various Asian manufacturers through distributors or manufacturers office in Europe
- Optical performance is noticed first by user, customer, ...
- Optical parameters decide on technology for many applications



#### References

- Handbook of Visual Display Technology, Springer ("all-in-one") available via SPRINGERLINK Karlheinz Blankenbach: Section 11 – Display Metrology 11.1 Introduction to Display Metrology p.2275 11.2 Standard Measurement Procedures p.2289 11.3 Advanced Measurement Procedures p.2331 11.4 Display Technology-Dependent Issues p.2417 11.5 Standards and Test Patterns p.2429 11.6 Measurement Devices p.2447
- International Committee for Display Metrology (ICDM) http://www.sid.org/ICDM/IDMSLicenseDownload.aspx
- K. Blankenbach: Display Metrology (with text), Veritas et Visus, http://eitidaten.fh-pforzheim.de/daten/mitarbeiter/blankenbach/vorlesungen/displays/Display\_Measurement\_VV.pdf
- K, Blankenbach: Display Metrology (video): adria http://eitidaten.fh-pforzheim.de/daten/mitarbeiter/blankenbach/vorlesungen/displays/Display\_Metrology\_ADRIA\_2006.mp4
- RI color calculator (units, CIE color spaces, ... free download)

http://radiant-imaging-color-calculator.software.informer.com/2.0/ Blankenbach / www.displaylabor.de / Display Metrology / WS 2013







# When Things Go Wrong\* ...











\*: lyrics from "It hurts me too", one of the most interpreted blues songs.

Blankenbach / www.displaylabor.de / Display Metrology / WS 2013



**Response time** 







See WS term:

Driving of FPDs

**This chapter** 

## What is in a Specification?

- Mechanical parameters
- Connectors
- Electrical interface
- Electrical characteristics
- Interface timing characteristics
- Absolute maximum ratings
- Backlight section for LCDs
- Optical characteristics
- Reliability tests
- Handling instructions

DISPLAY LABOR HOCHSCHULE PFORZHEIM

## **Example of Optical Specification for AM LCD (I)**



Blankenbach / www.displaylabor.de / Display Metrology / WS 2013

IT







# (Optical) Specifications - What are they good for ?



IT

Why P

- All optical measurements (contrast, color, ...) are performed under dark room conditions
   There is no serious extrapolation to ambient light (illuminance E) conditions
- Lifetime (LT): 25°C, full screen, permanent ON
   ⇒ This is not typical for most applications

'here'

Evaluation for application requirements (LT, E, ...) has to be done



#### **Typical Measurements**

- Tests by **visual inspection** with dedicated test patterns: Full screen white, grey scale, color, resolution, motion, ...
- Test by measurement devices with dedicated test patterns: Mostly full screen patterns
- Basic Procedures:
  - Spatial: Luminance, Contrast Ratio, Grey Scale, Color
  - Temporal: Response Time, Lifetime
  - Specific: Viewing Angle, Ambient Light, Touch, 3D, ...
- MEASUREMENTS CAN DAMAGE THE DISPLAY!

What should be measured depends on

display technology and application !



#### **Typical Test Patterns**

(examples see "testimages.exe")

| Measurement Task                                            | Recommended<br>Test Pattern       | Visualization |
|-------------------------------------------------------------|-----------------------------------|---------------|
| Luminance, contrast ratio, grey scale, color, response time | Full screen                       |               |
| Contrast ratio, Burn-In,                                    | Checkerboard                      |               |
| Modulation transfer function, sharpness                     | Resolution                        |               |
| Motion blur                                                 | Moving bar                        |               |
| Visual judgement                                            | Text, full screen, motion, faces, |               |



#### **Typical Measurements & Display Technology**

| Task                              | Lifetime        | Response time       | Ambient light | Viewing angle   |
|-----------------------------------|-----------------|---------------------|---------------|-----------------|
| Luminance                         | X<br>(all)      |                     |               | X<br>(LCD, LED) |
| Contrast ratio<br>(black ↔ white) | X<br>(all)      | X<br>(LCD, e-paper) | X<br>(all)    | X<br>(LCD, LED) |
| Grey scale                        |                 | X<br>(LCD)          | X<br>(all)    | X<br>(LCD, LED) |
| Color                             | X<br>(emissive) |                     | X<br>(all)    | X<br>(LCD, LED) |

Usually in data sheets

X: should be measured for () technologies

Only a few parameters are provided in specs / data sheets. Application relevant values have to be measured with display !



## **Typical Measurements & Application**

| Application | Lifetime | Response time | Ambient light | Viewing angle |
|-------------|----------|---------------|---------------|---------------|
| Industry    | X        |               |               |               |
| Automotive  | X        | X             | X             | X             |
| White goods | X        |               |               |               |
| Medical     | X        | X             |               | X             |
| E-Signage   | X        | X             | X             | X             |

Most relevant: X

DISPLAY LABOR Hochschule pforzheim

# Why Measuring Electronic Displays ?

#### Merits of display metrology

- Human vision is only descriptive
- Standardized measurement setups and test patterns
- Specifications enable judging of displays
- Wide range of measurement procedures for many applications

#### Shortcomings of display metrology

- Ambient light (simulation) difficult, therefore most of the specified values are measured under dark room conditions
- Vision sees things that measurement can't capture and vice versa

Display metrology is also necessary because FPDs are mostly produced in Asia and designed in in Europe







## **Summary & Questions**

- Take pictures of insufficient or badly working displays
- Download display specification (about 25 p.)
  - Try to understand each topic
  - Elaborate what could be missing for evaluation for of an embedded system for industrial, automotive, white goods, medical and e-signage applications
- Set up a list with measurements needed to evaluate this display and try to calculate how long this will last
- Write down examples for merits and shortcomings of display metrology



## **Overview Display Measurements**

Introduction



- Display Technology Dependent Issues (Shortcomings)
- Summary



## **Basic Characteristics of Vision**



DISPLAY LABOR Hochschule pforzhein



#### **Photometric Units**

Photometric unit are 'adapted' to vision, compare to physics units e.g. [W] for power

• Luminous flux (power) [Lichtstärke] : F / Im

Value of total amount of light coming out of a light source

Example: bulb, projector

• Luminance [Leuchtdichte] : L /  $\frac{cd}{m^2}$ Value of light of a light source emitted in one direction

Example: luminance of a display

• Illuminance [Beleuchtungsstärke] : E /  $Ix = \frac{Im}{m^2}$  (receiver) Illuminance = power / area:  $E = \frac{dF}{dA} = \frac{F}{A}$ Value of light hitting a surface from any direction Example: Ambient light "illuminates" paper or display









#### **Photometric Units Examples**

See e.g. specs:

- Luminance L =  $300 \text{ cd/m}^2$  for AMLCD
- Luminous flux F = 1,000 ANSI Im for projector
- Illuminance of 1,000 lm projector at 2 x 3 m<sup>2</sup>
  - $\rightarrow$  E = F / A = 167 lx

compare to 500 lx recommended at workplace!

Bright sunlight: 100.000 lx (reference for solar cells)

**RI Color Calculator** 



#### **Overview : Basic Parameters**

- Photometric units are used instead of SI one's as "vision is implemented"
- The display measurement parameters ("Fab 4")
  - Luminance
  - Contrast Ratio
  - Grey Scale
  - Color

are the fundamental procedures to specify and to characterise a display

- These 4 parameters are measured also under different conditions like lifetime, viewing angle, ambient light, ...
- To compare displays and specifications, the measurement procedure (set-up and geometry) and instrument should be the same (and calibrated)
- The accuracy of display measurements is typically lower than for many other measurements due to deviations of spectral sensitivity (V( $\lambda$ ), CMF)



## **Overview Display Measurements**

Introduction



- Display Technology Dependent Issues (Shortcomings)
- Summary



| Luminance        | Parameter          | Symbol | Condition | Min. | Typ. | Max. | Unit              |
|------------------|--------------------|--------|-----------|------|------|------|-------------------|
| Lummance         | Luminance          | Lw     | at center | -    | 1600 | -    | cd/m <sup>2</sup> |
| • [1] $- cd/m^2$ | (center of screen) |        |           |      |      |      |                   |

- Typical values : Displays 50 2,000 cd/m<sup>2</sup>, bulb 10,000 cd/m<sup>2</sup>
- Luminance (cd/m<sup>2</sup>) is not brightness: see § Grey Scale & § CIE Lab Luv, brightness is "detected and described" by humans and has no unit
- Basic value for contrast, grey scale, uniformity, viewing angle, ...
- Luminance is one of three parameters for color measurements (Tristimulus)
- Major source of error: Deviations from V( $\lambda$ ) curve and SNR for black
- Measurement conditions (see above)
  - Dark room unless otherwise noted
  - Center of display, perpendicular incidence, 25°C
  - Mostly full screen white image, PDP: 1% white surrounded by black
  - Usually mean value of 500 pixel (FOV) for monitor

# (Luminance) Measurement Devices (I)

There are basically two different principles for optical display measurements:

- Single detectors like spot meters integrate over many pixels (typically 25 to 500 pixel), aperture angle < 2°</li>
- Area detectors in cameras can measure nearly single pixel luminance over the total screen





# **Measurement Devices Examples**

**Principles** 

- Hood meter (simple, low cost)
   Luminance or colorimeter
- Meter with viewfinder (ease of use)
- Camera-based meters (enable image processing) for monitors and segmented displays, avoid Moirè by e.gl. Defocusing, see TechnoTeam presentation



• Spectrum: Captures intensity over wavelength, highest precision

#### **Devices**

- Luminance meter (lower cost, limited use as no color)
- Color meter (color measurement capable, covers also L, higher cost)



3000K bulb

Silicon photodiodes

900

1000 Wavelength / nm

#### Luminance Measurement and V( $\lambda$ ) Spectral Sensitivity



#### **Example :**

Test of IR-diode of remote control or IrDa with digital camera because it is not calibrated to V( $\lambda$ ), see also color management!



800



#### **Test Patterns for Luminance Measurements**

- Mostly full white screen
- Set-up: perpendicular, center of screen (o, see p 7)
- Uniformity: measure luminance at 5 or more locations (or camera)
- Contrast, grey scale and color base also on full screen showing white, black, grey, RGB
- Lifetime measurements (see § Common Issues) use often full white screen luminance measurement







HOCHSCHULE PFORZHEIM

## "Luminance" - Measurements of Reflective Displays

• Emissive displays (AM LCD, OLED):

Direct measurement of luminance L



#### • Reflective displays (E-Paper, refl. LCD):

Ambient light is reflected diffuse by display, luminance L is "generated" by reflectivity r of illuminance E





Typical reflectivity r: reflective LCD ~ 0.2 ; e-paper 0.4



#### **Examples of Reflective Displays**



cd/m<sup>2</sup>

| Uniformity | Luminance of white | Y <sub>L1</sub> | 360 | 450 | -   |
|------------|--------------------|-----------------|-----|-----|-----|
| Uniformity | White Uniformity   | δW              | -   | -   | 1.2 |

- Deviation of a display parameter, e.g. luminance L within display area, also measured for CR, GS and color
- 5, 9 or 13 spots method (ISO 9241)
- Uniformity is easy to measure and complex to judge as vision is less sensitive as measurements





## Area Measurements with Luminance Camera

Area measurement examples







#### Area Measurements with Luminance Camera

- Camera detector with special filters (like colorimeter) can measure luminance (and colour) in a short time
- Used aslo for uniformity measurements of icons, etc
- Limited accuracy compared to other devices

| 6-3-5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1995  | Service of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d             |
|       | STR. Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| 4.0   | and the second s | <b>第一社</b> 会社 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 运动关系          |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASAN.         |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.5.7        |

| Object        | pos         | radius  | Avg     | StdDev   | Ņ |
|---------------|-------------|---------|---------|----------|---|
| units:        | [pixel]     | [pixel] | [cd/m²] | [cd/m²]  | [ |
| cursor spot;  | (1166,676); | 5;      | 1,982;  | 0,05617; | 1 |
| spotmeter #1; | (1084,396); | 5;      | 6,825;  | 0,8274;  | 2 |
| spotmeter #2; | (1045,441); | 5;      | 7,925;  | 1,306;   | 2 |
| spotmeter #3; | (996,429);  | 5;      | 9,142;  | 2,309;   | 2 |
| spotmeter #4; | (1098,640); | 5;      | 2,070;  | 0,2466;  | 1 |
| spotmeter #5; | (1073,691); | 5;      | 1,667;  | 0,7365;  | C |



#### **Efficiency** Efficiency $\eta$ = "Light output per Watt"

- Measurement: Electric power consumption for "Full screen white"
- Ο



.....

- Projection and lamps: "Lumen per Watt"
- Displays: "Luminance per Watt", screen size to be normalized
- Viewing angle characteristics of light emission is a "weak point"
- Efficiency for lamps is key point, refers often to incandescent bulbs.
  Example left: same lumen Projection: F = 3,000 lm, P = 250 W ⇒ η ≈ 12 lm/W

| ≈ 700 lm                                 |              | <. (     |          |
|------------------------------------------|--------------|----------|----------|
|                                          | Incandescent | CFL      | LED      |
| Wattage                                  | 60W          | 13W      | 6W       |
| Lifetime <sup>2</sup>                    | 1 year       | 4 years  | 25 years |
| Average price                            | \$1.00       | \$2.00   | \$29.95  |
| Replacement cost per year <sup>1</sup>   | \$1.00       | \$0.50   | \$1.20   |
| Energy consumption per year <sup>2</sup> | 87.6kWh      | 18.98kWh | 8,76kWh  |
| Energy cost per year <sup>3</sup>        | \$10.51      | \$2.28   | \$1.05   |
| Total cost per year 4                    | \$11.51      | \$2.78   | \$2.05   |



# **Emissive Displays Efficiency = "Light output per Watt"**

#### Example of LCD

Lwhite ("set by vision")

| Excerp             | t from                   | Item                                 | Symbol | Condition                              | Min.    | Тур. | Max. | Unit              |
|--------------------|--------------------------|--------------------------------------|--------|----------------------------------------|---------|------|------|-------------------|
| data sh            | eet                      | Brightness of White                  | В      | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | 300     | 400  | -    | cd/m <sup>2</sup> |
|                    |                          | Power Supply Voltage                 | VDD    | -                                      | 3.0     | 3.3  | 3.6  | V                 |
|                    | P <sub>electronics</sub> | Power Supply Current                 | IDD    | VDD=3.3V                               | -       | 130  | 300  | mA                |
| P <sub>LCD</sub> = | +                        | LED Input Voltage                    | VLED   | -                                      | 4.5     | 5.0  | 5.5  | V                 |
|                    | P backlight              | LED Forward Current<br>(DIM control) | ILED   | VLED = 5V                              | -       | 230  | 300  | mA                |
|                    |                          | LCD Active Area                      | Α      | 71.04(W) mm x                          | 53.28(H | ) mm |      |                   |

Here  $\eta_n \approx 1 \text{ cd/W}$ 

Display frontal intensity efficiency:

$$\eta_{n} = \eta \cdot \mathbf{A} = \frac{\mathbf{L}_{white} \cdot \mathbf{A}}{\mathbf{P}_{LCD}}$$

- "Energy efficiency"
- Measure for efficiency for typical observer

Lighting:  $[\eta] = Im/W$ Not useful for displays because of viewing angle.



#### **OLEDs vs. LCDs : Power Consumption**





### **Summary & Questions**

- Compare vision 'detection' with luminance measurement
- Photometric system easies display measurements
- What are the main topics of luminance measurements?
- Be always aware that most values in specs are measured under dark room conditions
- Set up a list with measurements needed to evaluate this display and try to calculate how long this will last
- Elaborate 'detection' and signal processing requirements for luminance meters. Hint: Black has low luminance, white ~ 1,000 cd/m<sup>2</sup> AMLCD is DC; PDP, PMOLED & CRT pulsed, ...



## **Overview Display Measurements**

Introduction



- Display Technology Dependent Issues (Shortcomings)
- Summary
# **Contrast Ratio** ... is not a measure for readability of text (fullscreen)!

- Luminance ratio of bright / white / max / ON to dark / black / min / OFF
- Various definitions, mostly contrast ratio used, MTF s. b.
- Contrast ratio



- **Remarks** High C<sub>R</sub> can be critical because of measurement error for L<sub>black</sub>
  - Vision range :  $C_R = 3 : 1 500 : 1$ ; **30:1 is OK for multimedia!**
  - $C_R \approx 10$  : 1 recommended for non-fatigue reading (paper !)
  - High C<sub>R</sub> can bother (e.g. car headlights at night) !
  - $C_R$  in specs measured without ambient light !  $E \square \rightarrow C_R \square$
  - Various conditions like full screen, checkerboard, ...



### **Contrast Ratio Test Patterns**





### **Examples of Contrast Ratio**

|                |       |               | Direct | Projection |       |  |
|----------------|-------|---------------|--------|------------|-------|--|
|                |       |               | LCD    | PDP        | DLP   |  |
|                |       | Full screen   | 500    | 100        | 500   |  |
| L              | White | Highlight 1 % | 500    | 500        | 500   |  |
| / cd/m²        |       | Checkerboard  | 500    | 150        | 500   |  |
|                |       | Full screen   | 1.0    | 0.1        | 0.5   |  |
| В              | Віаск | Checkerboard  | 1.25   | 0.5        | 2.0   |  |
|                |       | Full screen   | 500    | 1,000      | 1,000 |  |
| с <sub>R</sub> |       | Highlight 1 % | 500    | 5,000      | 1,000 |  |
| Remarks:       |       | Checkerboard  | 400    | 300        | 250   |  |

- Full screen <u>white</u> << highlight (1%) white for PDP, other technologies nearly indep.
- Checkerboard <u>black</u> >> full black for projection systems (lens flare, ...)
- Checkerboard C<sub>R</sub> << highlight C<sub>R</sub> for PDP and projection



### LED LCD - Backlight Improvements : Local Dimming

#### Traditional Full-On LED

 Individual LED On/Off & Level Control



**Power saving 50% average (image dependant)** 

= 21,000 : 1



### **Examples for Luminance and Contrast Ratio**

|                    | Display 1 |  |  |
|--------------------|-----------|--|--|
| L <sub>white</sub> |           |  |  |
| L <sub>black</sub> |           |  |  |
| Contrast ratio     |           |  |  |
| Comment            |           |  |  |



#### **Summary & Questions**

- Contrast ratio is measured under dark room conditions as ratio of white luminance divided by black luminance
- Test patterns for contrast ratio is mostly full screen but some use checkerboard (projection) or 1% white (PDP)
- Contrast ratio is not a measure for readability or sharpness
- What is the basic procedure to measure contrast ratio ?
- Why and where depends the contrast ratio on test pattern ?
- Why is contrast ratio not meaningful for real world applications ?



### **Overview Display Measurements**

Introduction



- Display Technology Dependent Issues (Shortcomings)
- Summary



### **Visual Effects of Grey Shades**

#### Simultaneous Brightness Contrast

Bar has constant grey level (luminance) but appears brighter on the left !



Mach Band Effect

The grey bars appear brighter on their left side and darker on the right !





#### **Grey Shades and Vision**

- Grey shade is a definition for an observer,
- Grey level is a definition for a digital grey level of a display pixel
- The ,eye' shows a non-linear sensitivity of luminance = perceived brightness
- Digital data (grey level) should be recognized in a ,linear' way ! (digital grey levels for a display e.g. 6, 8, 10 Bit [per color])
- → Displays have to be adapted to vision and digital requirements!
   This adaptation is expressed by a parameter/ value called gamma.
   It is implemented in the operating system and/or graphics adaptor.
   This is also valid for printers, ...

 $B \sim L^{0.44}$ 



### **Digital Data - Perceived Brightness**

- Perceived brightness B by human vision (typ.)
- Brightness B and Grey shade D should be proportional B ~ D
- Luminance L of a display depends on grey shade D L ~ D<sup>γ</sup>
- Gamma value ( $\gamma$ ) for linear relationship : B ~ D  $\rightarrow$  B ~ L <sup>0.44</sup>  $\rightarrow$  B ~ D  $\gamma$  <sup>0.44</sup>  $\rightarrow$   $\gamma \approx$  2.3



### **Test Patterns for Grey Scale**

| 0             | 15          | , 30 | 45 | , 60 | 75 | 90 | 105 | 120 | 135 | 150 | 165 | 180 | 195 | 210 | 225 | 240 | 265 |
|---------------|-------------|------|----|------|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| # of gr<br>-8 | ey value re |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     |     |
| -7            |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     | /   |     |
| -6            |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     |     |
| -5            |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     |     |
| -4            |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     |     |
| -3            |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     |     |
| -2            |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     |     |
| -1            |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     |     |
| 0             |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     | + 0 |
|               |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     | +1  |
|               |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     | +3  |
|               |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     | + 4 |
|               |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     | + 5 |
|               |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     | + 6 |
|               |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     | + 7 |
|               |             |      |    |      |    |    |     |     |     |     |     |     |     |     |     |     | + 8 |

Visual inspection for grey level resolution,

"vanishing of neighbouring grey levels", influence of e.g. ambient light, ...



Boxes in vertical bars with ±1, ±2, ±3, ... grey levels. ±1 is often not noticeable thus reducing visible "grey levels".





### **Visual Test Patterns for Grey Scale**



Shadowing of grey levels:

- Measurement or visual inspection
- Mainly critical for Passive Matrix LCDs and Passive Matrix OLEDs





### **Examples of Grey Scale**

 Measure full screen luminance (s.a.) from black to white for typically 10 grey levels and plot (right)

 Example values

IT

| Grey scale | Luminance |
|------------|-----------|
| 0          | 1.4       |
| 15         | 1.7       |
| 31         | 2.4       |
| 47         | 4.1       |
| 63         | 7.7       |
| 79         | 13.6      |
| 95         | 20.5      |
| 111        | 27.0      |
| 127        | 35.7      |
| 143        | 48.7      |
| 159        | 66.1      |
| 175        | 87.5      |
| 191        | 109.0     |
| 207        | 130.0     |
| 223        | 149.0     |
| 239        | 173.0     |
| 255        | 195.0     |



Remark: Linear chart of luminance over grey level is only rarely used → see next slide.

### **Gamma Measurement**

- Greyscale for images, ...
- Measurements: L(GS) @ 0 ... 255
- Test patterns:
  - Visual: Grey bars (left)
  - Measurement: Full screen
- Measure luminance L for about
  - 10+ grey levels e.g. 0, 15, 31, ...
- Plot in double log chart,

L(GS) - L(0) is helpful

- Results:
  - Gamma value by fit as log slope  $\Delta L$  /  $\Delta GL$
  - GS resolution, deviations, ...

#### Gamma mostly not specified for professional displays

#### Log (rel. Luminance)



### Log (rel. Grey Level)

### **Deviations from ideal curve !**

**Rem.:** Contrast ratio represents only the min and max (o) of grey scale!



#### **Gamma Measurement Example Data**

| Grey scale | Luminance | log (Grey scale) | log(Luminance) | log(Luminance - L(0)) |
|------------|-----------|------------------|----------------|-----------------------|
| 0          | 1.4       | -2.75            | -2.14          |                       |
| 15         | 1.7       | -1.22            | -2.07          | -2.89                 |
| 31         | 2.4       | -0.91            | -1.92          | -2.30                 |
| 47         | 4.1       | -0.73            | -1.68          | -1.86                 |
| 63         | 7.7       | -0.60            | -1.41          | -1.49                 |
| 79         | 13.6      | -0.51            | -1.16          | -1.20                 |
| 95         | 20.5      | -0.43            | -0.98          | -1.01                 |
| 111        | 27.0      | -0.36            | -0.86          | -0.88                 |
| 127        | 35.7      | -0.30            | -0.74          | -0.75                 |
| 143        | 48.7      | -0.25            | -0.60          | -0.61                 |
| 159        | 66.1      | -0.20            | -0.47          | -0.48                 |
| 175        | 87.5      | -0.16            | -0.35          | -0.35                 |
| 191        | 109.0     | -0.13            | -0.25          | -0.26                 |
| 207        | 130.0     | -0.09            | -0.18          | -0.18                 |
| 223        | 149.0     | -0.06            | -0.12          | -0.12                 |
| 239        | 173.0     | -0.03            | -0.05          | -0.05                 |
| 255        | 195.0     | 0.00             | 0.00           | 0.00                  |

#### This can be easily done by MATLAB, EXCEL, ...

| Example for G | NIST<br>Testbilder             |                                |
|---------------|--------------------------------|--------------------------------|
| Grey level    | Display 1 L /cd/m <sup>2</sup> | Display 2 L /cd/m <sup>2</sup> |
| 0             |                                |                                |
| 36            |                                |                                |
| 73            |                                |                                |
| 108           |                                |                                |
| 146           |                                |                                |
| 182           |                                |                                |
| 218           |                                |                                |
| 255           |                                |                                |



### Gamma in PC Hard- and Software





Note that Gamma value is mostly relatively used. A value of "1" means no change.



### **Summary & Questions**

- Human vision (brightness) has a nonlinear relationship to luminance
- Gamma value combines grey scale to luminance  $L \sim GL^{\gamma}$
- The gamma value is measured by a series of grey levels and plotted in a double logarithmic graph
- EO-Characteristic of displays have to be adapted to gamma curve
- Why is the contrast ratio not meaningful for image rendition quality ?
- How significant or visible are deviations from ideal gamma curve?



### **Overview Display Measurements**

Introduction



- Display Technology Dependent Issues (Shortcomings)
- Summary



### Why Color Measurements ?

.. because vision is adaptive to color !

#### Examples

- Reddish illumination in supermarket for fruit and meat elsewhere white
- Woman's clothes shops have windows for daylight
- Cars: Xenon headlight is seen bluish compared to H4 bulb
- ,Analogue' films : daylight and tungsten light
- Digital cameras have white balance, ,Auto' should resemble vision but often fails





### **Colors Reproduction**

- ... via color mixture !
- Additive color mixture

e.g. displays : R + G + B = ₩ including 3-panel projection (black can't be ,displayed' on (white) screen !)

#### - Subtractive color mixture

e.g. printer and stacked displays:

C + M + Y = K

(cyan, magenta, yellow, K for black)
(no printing of white = paper ,color' !)





### **Color Vision**

#### **Natural Spectrum**

(chart intensity over wavelength)

Reflected sunlight from white leaf

Captured by digital camera and display on a monitor:

,Artificial' Spectrum

Emission of white leaf from display

Both spectra result in the same color impression !

(if calibrated devices were used)





### **Spectra of Different Display Technologies**



 $\rightarrow$  Vision recognizes all the displays in white color

- Color systems for measurement and comparison are therefore necessary!
- Measurements and calculations via Color Matching Functions and

Tristimulus values X, Y, Z (see below)



### **Color Measurements**

- Human vision is only descriptive
- Color impression depends on illuminance
- Different spectra can produce the same color (impression)

#### Color measurements for displays are necessary for

- Color space calculations
- Color gamut, white point
- Color Management
- Viewing angle effects mainly of LCDs
- Color coding for <u>Human Machine Interface</u> (HMI, MMI)

see specs

- Influence of illumination
- Color measurements devices

Same principles as for luminance but 3 sensors (one for luminance) or spectrometer (measures intensity for each wavelength)



### **Most Wide-spread Color Spaces**

- Displays : CIE xxxx : <u>Commission Internationale</u> d'<u>É</u>clairage xxxx : year of standardization
- Software : RGB (red, green, blue)
- Printing : Munsell, Natural Color System (NCS), Hue Saturation Lightness (HSL, also in software), ...



### **Measurement and Calculations of Color Co-Ordinates**

Example for emissive display and measurement of spectrum:

The spectrum is captured and the intensity of each wavelength is multiplied with the Color Matching Functions (CMF, weighting function of human eye, often 2° values) and summarized. This results in Tristimulus values which are the basis of all (CIE) color spaces and calculations.





### **Tristimulus Color Co-Ordinates**

- X, Y (= L) and Z are the very basic co-ordinates for all CIE color spaces
- X, Y, Z are then transformed to 2D color spaces like CIE 1931
- Tristimulus values are the only color space where calculations (addition, matrix, ...) can be made!
- Example: Mixing of two light sources 1 and 2

$$-X_{M} = X_{1} + X_{2}$$

$$-\mathbf{Y}_{\mathsf{M}} = \mathbf{Y}_1 + \mathbf{Y}_2$$

 $- Z_{\rm M} = Z_1 + Z_2$ 

The "mixed" co-ordinates can then be transformed to other CIE spaces

#### • Examples:

- White point adjustment
- Ambient light color wash out



### **Principle of Colorimeters and Spectrometers**





### Area Color Measurements with Special Camera

- Camera detector with special filters (like colorimeter) can measure luminance and colour in a short time
- Used for uniformity measurements of pixels or clusters etc.
- Limited accuracy compared to other devices



ISPLAY LABOR

## Color Space CIE 1931

- Oldest CIE standard
- Still in use today

IT

• Full screen test patterns

- Problem: Co-ordinate differences ≠ color differences (Mac Adam)
- Linear transformation of Tristimulus values, L = Y



#### 3. co-ordinate : Luminance L = Y





### **LCD CIE 1931 Specification**

Ta=25°C.

| ltem                                              | Unit | Conditions | Min. | Тур. | Max. |
|---------------------------------------------------|------|------------|------|------|------|
|                                                   |      | White x    | 0.26 | 0.31 | 0.36 |
|                                                   |      | White y    | 0.27 | 0.32 | 0.37 |
|                                                   |      | Red x      | 0.56 | 0.60 | 0.64 |
| Color / Chromaticity<br>Coordinates<br>(CIE 1931) |      | Red y      | 0.31 | 0,35 | 0.39 |
|                                                   |      | Green x    | 0.31 | 0.35 | 0.39 |
|                                                   |      | Green y    | 0.53 | 0.57 | 0.61 |
|                                                   |      | Blue x     | 0.11 | 0.15 | 0.19 |
|                                                   |      | Blue y     | 0.08 | 0.12 | 0.16 |
| Color Gamut                                       | %    |            | -    | 50   | -    |

#### Plot these tolerances in CIE 1931 with $\triangle x$ and $\triangle y = 0.1$ !



#### Color Space CIE 1931





### **Correlated Colour Temperature**

- Description of white point
- Formula
- $T_C = 437 n^3 + 3601 n^2 + 6831 n + 5517$

where

$$- n = \frac{x_n - 0.3320}{0.1858 - y_n}$$

-  $x_n$ ,  $y_n$  : colour co-ordinate of white

• Formula is good for 2,000 ... 10,000 K

• Example  $x = y = 1/3 \rightarrow : T_C \approx 5487 \text{ K}$ 





#### **Color Gamut**



### **Color Gamut for RGBW**



#### **RGBW** has 4 subpixels:

- W subpixel is highly transparent enhancing white luminance
- Advantage: Higher L and efficiency
- Issue: W lowers gamut





#### White Point Adjustment

- Color coordinates of "White point" can differ even within the same display lot.
- If these displays or different display types have to be mounted next to each other, the white point has to be adjusted to the reference value.
- White point is set by RGB color coordinates x, y and their luminance  $L_{RGB}$
- Calculation only in Tristimulus space:

$$X_W = X_R + X_G + X_B ; L_W = Y_W = Y_R + Y_G + Y_B ; Z_W = Z_R + Z_G + Z_B$$

Tristimulus from CIE 1931: Y = L , 
$$X = rac{Y}{y}x$$
 ,  $Z = rac{Y}{y}(1-x-y)$ 

 Color coordinates are "fix" only RGB luminance can be adjusted. This is often done within the Timing Controller of the display as "offset"; other possibility by remapping of grey levels e.g. G 0 ... 255 → G 0 ... 200 if white has is somewhat greenish.


# White Point Adjustment

#### Examples:





# **White Point Fundamentals**

 Typical luminance relationship for white:

 $R \approx 0.3 L_w$  $G \approx 0.6 L_w$  $B \approx 0.1 L_w$ 

- If one primary is "stronger" or "weaker", the white point shifts to or from the original locus. Example in chart for blue
- Luminance is the third coordinate of CIE 1931 and mostly never plotted (direction to viewer).





#### **Example: White LED**

 White LED consists of a blue LED and a yellow conversion phosphor (some have RG phosphors)



- Some blue light is converted to yellow → Tristimulus color mixing
- Calculation in Tristimulus space:  $X_W = X_B + X_Y$ ;  $L_W = Y_W = Y_B + Y_Y$ ;  $Z_W = Z_B + Z_Y \rightarrow CIE 1931 x_W, y_W$



Image from www.wikipedia.com

#### • Intensity ratio of blue to yellow set white point on line

Blankenbach / www.displaylabor.de / Display Metrology / WS 2013



#### White Point Shift for LCDs with White LED Backlights



Blankenbach / www.displaylabor.de / Display Metrology / WS 2013



# **Color Differences in CIE 1931**

- Blue : high sensitivity for small  $\Delta x$  and  $\Delta y$
- Green : medium sensitivity
   for ∆x and lowest for ∆y
   ,lack of gamut' for green
   mostly not recognizable
- CIE 1931 shouldn't be used but is mentioned in nearly all display specs
- New measurements : CIE 1976 !





#### Color Spaces CIE 1931 vs. 1976



The 10x Mac Adams JNDs of CIE 1931 are transformed to CIE 1976 UCS. It is clearly visible that the ellipse for green shrinks while the blue one is significantly enlarged and therefore better to capture by vision

HOCHSCHULE PFORZHEIM

# Color Space CIE 1976 UCS

• CIE 1976 UCS recommended for metrology !

IT

- "Characterisitcs similar to CIE 1931, e.g. black body
- Co-ordinate differences
   ≈ colour differences
- Linear transformation  $u' = \frac{4X}{X+15Y+3Z} = \frac{4x}{-2x+12y+3}$   $v' = \frac{9Y}{X+15Y+3Z} = \frac{9y}{-2x+12y+3}$

#### 3. co-ordinate : Luminance L = Y



Gamut (100% usually refers to NTSC)

$$A = 256.1 \left[ \left( u'_{R} - u'_{B} \right) \left( v'_{G} - v'_{B} \right) - \left( u'_{G} - u'_{B} \right) \left( v'_{R} - v'_{B} \right) \right]$$

Blankenbach / www.displaylabor.de / Display Metrology / WS 2013



# CIE 1976 LAB, LUV

#### Approach

Approximation of human ,signal processing', which distinguish mainly :

- bright dark (L)
- red green (g r)
- blue yellow (b y)



DISPLAY LABOR HOCHSCHULE PFORZHEIM

# **CIE 1976 Lab for Reflective Displays and Printers**

- Sphere-like representation
- Color gamut only in 3D

IT

 L\* is not luminance and therefore not a direct measurement parameter





# **Color Gamut of LCD in CIE Lab** | \* • Color gamut in 3D blanc(100,0,0) • Difficult to interpret and to compare Often 2D plots for certain L\* are used



#### **Color Gamut of LCD in CIE Lab**

- Color gamut in 3D
  - for  $L^* = 0$
- Color gamut for reflective E-INK (EPD) too low, see photo:





DISPLAY LABOR HOCHSCHULE PFORZHEIM

**CIE 1976 Lab / Luv** 

#### Non-linear transformation

#### CIE Lab (reflective displays, printer)

$$\begin{aligned} \mathsf{L}^{*} &= 116 \cdot \left[ f(\mathsf{Y},\mathsf{Y}_{\mathsf{n}}) - \frac{16}{116} \right] \\ \mathsf{a}^{*} &= 500 \cdot \left[ f(\mathsf{X},\mathsf{X}_{\mathsf{n}}) - f(\mathsf{Y},\mathsf{Y}_{\mathsf{n}}) \right] \\ \mathsf{b}^{*} &= 200 \cdot \left[ f(\mathsf{Y},\mathsf{Y}_{\mathsf{n}}) - f(\mathsf{Z},\mathsf{Z}_{\mathsf{n}}) \right] \end{aligned}$$

with 
$$\frac{Y}{Y_n} \begin{cases} > 0.008856: f(Y, Y_n) = \left(\frac{Y}{Y_n}\right)^{\frac{1}{3}} \\ \le 0.008856: f(Y, Y_n) = 7.787 \left(\frac{Y}{Y_n}\right) + \frac{16}{116} \end{cases}$$

 $f(X,X_{n})$  and  $f(Z,Z_{n})$  acc.

Color difference:

$$\Delta \mathsf{E}_{\mathsf{ab}}^{*} = \sqrt{\left(\Delta \mathsf{L}^{*}\right)^{2} + \left(\Delta \mathsf{a}^{*}\right)^{2} + \left(\Delta \mathsf{b}^{*}\right)^{2}}$$

'n' refers to white point

#### **CIE Luv (emissive displays)**

$$L^{*} = 116 \cdot \left[ \left( \frac{Y}{Y_{n}} \right)^{\frac{1}{3}} - \frac{16}{116} \right]^{\frac{1}{3}}$$
$$u^{*} = 13 L^{*} \cdot (u' - u'_{n})$$
$$v^{*} = 13 L^{*} \cdot (v' - v'_{n})$$

u', v' :1976 CIE UCS

Color difference:

$$\Delta \mathsf{E}_{uv}^{*} = \sqrt{(\Delta \mathsf{L}^{*})^{2} + (\Delta \mathsf{u}^{*})^{2} + (\Delta \mathsf{v}^{*})^{2}}_{\text{Luminance}}$$

### Merit of CIE Lab & CIE Luv: Color difference formula $\triangle E$

Blankenbach / www.displaylabor.de / Display Metrology / WS 2013

# **Characters and Color**

#### ISO 15008 for automotive infotainment, also used for public displays

#### 4.4 Colour

IT

#### 4.4.1 Colour combinations

When a symbol and its background are of different colours, minimum luminance contrast (see 4.3.1) shall be provided. For physiological and psychological reasons, not all symbol/background colour combinations are acceptable. Because of this, when selecting colours in full multicolour displays, symbol/background colour combinations should be chosen in accordance with Table 1.

| Background colour          | Symbol colour |        |        |                           |             |                            |       |
|----------------------------|---------------|--------|--------|---------------------------|-------------|----------------------------|-------|
|                            | White         | Yellow | Orange | Red <sup>a</sup> , Purple | Green, Cyan | Blue <sup>a</sup> , Violet | Black |
| White                      |               | - 1    | 0      | +                         | +           | ++                         | ++    |
| Yellow                     | _             |        | -      | о                         | 0           | +                          | ++    |
| Orange                     | 0             | —      |        | - 1                       | _           | 0                          | +     |
| Red <sup>a</sup> , Purple  | +             | о      | -      |                           | _           | _                          | +     |
| Green, Cyan                | +             | 0      | -      | _                         |             | - '                        | +     |
| Blue <sup>a</sup> , Violet | ++            | +      | 0      | -                         | _           |                            | _     |
| Black                      | ++            | ++     | +      | +                         | +           | _                          |       |
| ++ Preferred               |               |        |        |                           |             |                            |       |
| + Recommended              |               |        |        |                           |             |                            |       |
|                            |               |        |        |                           |             |                            |       |

Acceptable with high saturation differences

Not recommended

<sup>a</sup> Pure red and blue should be avoided because the eyes may have trouble focusing on these colours because of eye chromatic aberration.

#### 4.4.2 Colour discriminability



For minimum colour discriminability, there shall be a minimum colour difference of  $\Delta E_{UV} = 20$ , in accordance with the  $\Delta E_{UV}$  colour difference metric defined in the CIE 1976 colour space model CIELUV (See CIE 15.2:1986). Reference white is the white produced by the display. The measurement shall be taken using a colour meter with a FOV of 20' with the same geometry used for the luminance contrast measurement, and shall be performed for all colours intended to be used for colour coding, both in night and day conditions. All relevant pairs of colours shall be evaluated using this  $\Delta E_{UV}$  colour difference metric. Reference white is the white produced by the display in each condition.



#### Color Differences acc. CIE 1976 Lab / Luv

$$\Delta E_{ab}^{*} = \sqrt{\left(\Delta L^{*}\right)^{2} + \left(\Delta a^{*}\right)^{2} + \left(\Delta b^{*}\right)^{2}} \qquad \Delta E_{uv}^{*} = \sqrt{\underbrace{\left(\Delta L^{*}\right)^{2} + \left(\Delta u^{*}\right)^{2} + \left(\Delta v^{*}\right)^{2}}_{Color}}$$

- $\Delta E$  : Difference of two color co-ordinates incl. lightness
- ▲ E = 1 : Just Notable Difference, minimum difference to distinguish two ,colors' (lightness and/or color co-ordinates)
- $\Delta E = 5$  : Difference which is recognized by nearly everybody. This value is regarded practically as maximum tolerable difference

**Example :** Black - yellow ( $\Delta L \neq 0$  und  $\Delta C \neq 0$ ) can generate

a larger ,color contrast' as black – white

 $(\Delta L \neq 0, \Delta C = 0$  because of same co-ordinate)

 $\rightarrow$  better readability for yellow on black (next slide)

Test Test

Test

Test

# Color Differences acc. CIE 1976 Lab / Luv

**Example :** Black - yellow ( $\Delta L \neq 0 \text{ und } \Delta C \neq 0$ ) can generate

a larger ,color contrast' as black – white

 $(\Delta L \neq 0, \Delta C = 0$  because of same co-ordinate)

 $\rightarrow$  better readability for yellow on black

| Measured | L      | u'   | v'   | Calculated | L*  | u* | <b>V</b> * |
|----------|--------|------|------|------------|-----|----|------------|
| UCS      | /cd/m² |      |      | CIE Luv    |     |    |            |
| White    | 100    | 0.2  | 0.45 | White      | 100 | 0  | 0          |
| Black    | 1      | 0.2  | 0.45 | Black      | 9   | 0  | 0          |
| Yellow   | 90     | 0.25 | 0.53 | Yellow     | 96  | 62 | 100        |

 $\rightarrow \Delta E^*$  (black - white) = 91 ;  $\Delta E^*$  (black - yellow) = 146 !



# Color Differences acc. CIE 1976 Lab / Luv

... see ,Introduction – Ergonomics'





# **CIE vs. RGB Colour Space**

- Image is captured or designed in RGB
- Display shows this via RGB data on display (printer uses CMY)
- Display is characterized in CIE







#### **CIE vs. RGB Colour Space**

Tristimulus coordinates of RGB of a display, e.g. via "reverse" CIE formula

$$\begin{pmatrix} X_{R} & X_{G} & X_{B} \\ Y_{R} & Y_{G} & Y_{B} \\ Z_{R} & Z_{G} & Z_{B} \end{pmatrix} = T ( abbreviation for Tristimulus matrix)$$

$$\begin{array}{c} \textbf{RGB} \rightarrow \textbf{CIE} \quad \begin{pmatrix} \textbf{X} \\ \textbf{Y} \\ \textbf{Z} \end{pmatrix} = \textbf{T} \cdot \begin{pmatrix} \textbf{R}^{\gamma} \\ \textbf{G}^{\gamma} \\ \textbf{B}^{\gamma} \end{pmatrix}$$

Calculate color coordinate for given RGB grey levels and gamma

$$\begin{array}{c} \textbf{CIE} \rightarrow \textbf{RGB} \\ \textbf{B}^{\gamma} \\ \textbf{B}^{\gamma} \end{array} = \textbf{T}^{-1} \cdot \begin{pmatrix} \textbf{X} \\ \textbf{Y} \\ \textbf{Z} \end{pmatrix}$$

Calculate RGB grey levels for given color coordinate and gamma This is more important: Task: "The display should show exactly this color coordinate!"

# Note: R, G, B are normalized to 1

Blankenbach / www.displaylabor.de / Display Metrology / WS 2013



- **TV Color Spaces** 
  - YIQ : NTSC

 $\begin{pmatrix} Y \\ I \\ Q \end{pmatrix} = \begin{pmatrix} 0.30 & 0.59 & 0.11 \\ 0.60 & -0.28 & -0.32 \\ 0.21 & -0.52 & 0.31 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$ 

• YUV : PAL, SECAM

• YCbCr : ITU-R BT.601, 709 HDTV

$$\begin{pmatrix} Y \\ Cb \\ Cr \end{pmatrix} = \begin{pmatrix} 0.30 & 0.59 & 0.11 \\ -0.17 & -0.33 & 0.50 \\ 0.50 & -0.42 & -0.08 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

- All parameters are normalized
- $Y \equiv$  Luminance, same formula for all TV color spaces
- Luminance is set by about 30% R, 60%G and 10% B
- IQ, UV, CbCr  $\equiv$  Chrominance



#### **Case Study : White Color Adjustment**

Task
 Adjust display to "given" white point

#### • Conditions:

"Dark room", RGB LEDs with PWM dimming, RGB co-ordinates given as Lxy, ...

#### • Solutions:

- "Try and measure"
- "Measure and calculate"





# **Color Space Summary**

|                               | <b>CIE 1931</b>                                      | CIE 1976<br>UCS       | CIE Lab<br>CIE Luv | RGB                |
|-------------------------------|------------------------------------------------------|-----------------------|--------------------|--------------------|
| Tristimulus<br>transformation | Linear                                               | Linear                | Non-linear         | n. a.              |
| Luminance                     | Yes                                                  | Yes                   | No                 | n. a.              |
| Plot                          | 2D                                                   | 2D                    | 3D                 | 3D                 |
| Pros                          | history                                              | ∆co-cord. ≈<br>∆color | JNDs               | SW                 |
| Cons                          | $\Delta$ co-cord.<br>≠ $\Delta$ color<br>(Mac Adams) | L not<br>brightness   | 3D, L* ≠ L         | Device<br>specific |
| Used for                      | Specs                                                | Specs<br>(recomm.)    | ΔΕ                 | SW                 |

Blankenbach / www.displaylabor.de / Display Metrology / WS 2013



# **Summary & Questions**

- Human vision is represented as Color Matching Function in CIE
- Various CIE standards exist, 1931 mostly used, 1976 UCS recommended
- CIELAB and CIELUV are used for color difference formula; they also provide brightness – luminance relationship
- Color is measured in CIE and programmed by RGB
- Color management leads to better results but is not very common in public
- Color tolerances is specs are noticed depending on color due to Mac Adam
- What are the influences of spectral sensitivity of color measurement devices on the color co-ordinates?
- Is CCT (/K) and Gamut (/%) very meaningful ?

## **Overview**

- Introduction
- Basic Parameters (Merits)



- Some selected topics, others can be also relevant!
- Spatial domain: Uniformity
- Time domain:
  - Lifetime, burn-in, IS...
- Ambient light
- Signal processing (see § TV)
- Display Technology Dependent Issues (Shortcomings)
- Summary



#### **Overview : Parameters - Common and Display- Specific**

- The basic display measurement parameters
   Luminance, Contrast Ratio, Grey Scale, Color
   are used to evaluate the application-specific performance of displays
- These parameters are e.g. lifetime, viewing angle, ambient light, ...
- However most of these measurements and therefore data in specs are often "too simple" for applications like
  - Luminance & lifetime (Contrast ratio is better for LCDs)
  - Contrast ratio & ambient light (grey levels and color vanish)
  - Contrast ratio & viewing angle (grey levels and color degrade also)
- Some of these "advanced" measurements are "dedicated" to display technologies like Differential Aging for emissive displays and viewing angle for LCDs



# **Lifetime Overview**

- Definition: Lifetime  $T_{LT}$  is half (L<sub>50</sub>) of initial value  $L_{100}$ Measured and specified usually for
  - Full screen white luminance
  - 25°C (often extrapolated)
  - Ideal operating conditions (full screen, power always on)



#### Are those data 'good' for professional display applications ?

- Static content (neighboring pixels have different operating time, ... ) :
  - Emissive displays like PDP: Burn-In, Differential Ageing
  - LCDs: Image Sticking
- Many displays are switched ON and OFF, only a few are permanent ON
- Many displays are exposed to mostly higher temperatures as 25°C



# **Issues of Lifetime in Specifications**

- Lifetime measured at ~ 75°C and extrapolated to 25°C in specs!
- Temperature in application is higher than 25°C thus reduced lifetime: Temperature ↑ → Life time ↓
- Lifetime is mostly measured for static white image luminance
- When static images are shown, effects like Burn-In (emissive displays : Grey level ↑ → Life time ↓ ) and Image Sticking (LCDs) are likely to occur (see below)
- Lifetime is therefore also specified for 20% drop (80% of  $L_o$ ) for e-signage and automotive displays
- Lifetime has to be evaluated for specific applications incl. content shown
- Full white luminance is often not the best test pattern:
  - Emissive displays: checkerboard
  - LCDs: Colored boxes and text, test on medium grey

### **Other Lifetime Measurement Parameters**

• LCDs

| Symbol         | Min   | Тур | Max | Units | Remark                              |  |
|----------------|-------|-----|-----|-------|-------------------------------------|--|
| Operating Life | 30000 | -   | -   | Hrs   | Ta = 25 ℃ , I <sub>LED</sub> = 25mA |  |
|                |       |     |     |       | Note 3,4                            |  |

Note 3: If G043FW01 V0 module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.

Note 4: Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

LCDs at extreme conditions (high temperatures, humidity): Measured additionally Contrast Ratio (as polarizer may degrade)

#### • Emissive Color Displays

Measure luminance and color (white point and/or RGB) due to Differential Aging



#### **Lifetime – Measurement Procedures and Issues**

 Life time is measured in climate chamber, mostly at elevated temperatures (e.g. 60°C) and extrapolated to 25°C.

IT

• This is reasonable as 25°C lifetime is in the range of several 10,000 h.



- Often measurements with a large number of displays is started in parallel for 25 and 60°C. Results are then compared and used for extrapolation from 60°C to 25°C lifetime, see next slide "LT factor".
- Display must mostly be removed from climate chamber for measurements due to optical measurements. When the measurements can be quickly performed (less than 3 mins), the measurement at elevated temperature can be used. If longer, wait for about 30 mins until the displays have adapted to room temperature.
- > 3 samples of the same display should be tested.

# Lifetime – Measurement Procedures and Issues

- Lifetime is measured mostly for full screen white luminance.
- This "lifetime" does not apply for mostly static content is shown on displays, as neighboring pixel have very different operating time.
- When those pixels show the same grey level (or color), lifetime degradations for emissive displays become noticeable (burn-in, see below). Even a luminance difference of about 10% of neighboring pixels is seen by everybody.
- So a specified lifetime (50% of initial luminance) of e.g. 50,000 h can result in significant degradation of image quality after 10,000 h.
- High luminance, temperature and humidity typically reduce the lifetime.
- For many displays like LCDs, contrast ratio should be measured as well over time.
- LCD luminance lifetime is mostly influenced by LED backlight degradation.



# **Lifetime Dependencies**

#### Temperature

Life time is measured at elevated temperature (e.g. 75°C)  $L_{\xi}$ and extrapolated to 25°C for specs! Reason: 50.000 h  $\approx$  5y Problem: Extrapolation is rule of thumb

#### Luminance

Emissive displays: Life time is measured at a certain (low) luminance. Higher luminance (e.g. for outdoor use) reduces lifetime. "Uneven" load (grey level, time) of pixels will lead to "Burn-In" (s.b.)





DISPLAY LABOR HOCHSCHULE PFORZHEIM

# Luminance Lifetime of OLEDs

Estimated lifetime >70K hours

# Extrapolated from 50% value for 85°C



Source: WSI



#### **Lifetime Examples**

#### **OLED**





Time



Blankenbach / www.displaylabor.de / Display Metrology / WS 2013



# **IESNA LM-80 LED Lifetime Measurement**

- 6,000 hours of testing with a minimum of 25 samples
- Extrapolated lumen maintenance behaviour mostly 'exponential' model.



Blankenbach / www.displaylabor.de / Display Metrology / WS 2013

# **Example Procedure for Lifetime Measurement**

- 1. Prepare climate chamber, displays and measurement devices
- 2. Prepare measurement document with all topics listed
- 3.Warm-up climate chamber



LT requires time and money

- 4.Warm-up displays (incl. electronics) at room temperature (RT)
- 5.Measure via IR-meter front surface temperature (FST) of display at RT
- 6.Measure all optical parameters needed. LT measurements are usually performed for dark room conditions.
- 7.Put display into climate chamber.
- 8.Measure display parameters (white luminance at first and last, white luminance is reference) and FST in climate chamber after 30 mins. immediately after door is opened.
- 9.If FST lowers during necessary measurements for more than 5°C, close doors and wait for 30 mins. and continue acc. 8.
- 10.If displays must be removed from climate chamber, wait until FST is settled in the range of RT. Then perform measurements.
- 11.Repeat all measurements: Every 12h for first 5 days, then 24h until 10 days, ...



### **Burn - In of Emissive Displays**







... Burn-in is the reason for using screen savers on PC monitors because first technology was CRT

Today: Caution for information systems with static content like airport, railway, ... or zoom of 4:3 SD TV to 16:9 for PDP TVs



# **Burn-In with Checkerboard**

#### **Typical measurement procedure**

Idea: Compare 100% ON to OFF pixels

- Design a 5x5 checkerboard
- Select e.g. middle line 3 boxes (2 white, 1 black)
- Measure the 'initial' luminance at the three marked positions for black  $L_0(K)$  and white  $L_0(W)$
- T = 0 : Display checkerboard for a long time
- Wait x hours (can also be repeated)
- Measure luminance L' of the boxes at the same locations for full screen white
- Calculate Burn-In by  $L'_0(W) / L'_0(K)$
- Further calculations possible




DISPLAY LABOR HOCHSCHULE PFORZHEIM

## Image Sticking of LCDs ('Burn In' of LCDs) > 20"

#### After power on





After 3 hours





Inverted color:  $R \leftrightarrow C$   $G \leftrightarrow M$   $B \leftrightarrow Y$ B and W minor Area IS

Inverted text: B ↔ W, borders visible, background minor Line IS



## **Image Sticking Examples**





## **Image Sticking Measurement**

Display Checkerboard for long time and switch (measure) at medium grey level (e.g. 60 of 255)



#### Medium grey level



(c)Normalized data set

Measure at different locations at the positions of W and K of the checkerboard



## **Color Shifts due to Differential (RGB) Ageing**

- Differences in life time of RGB emitters lead to color shifts
- This can also be forced by different ,loads' (grey level, ON-time)
- Differential aging is different to Burn-in because Differential Aging occurs only on color displays
- Sensible to Differential Aging are mainly emissive displays like CRT, PDP, OLED, ...
- This lowers the useful lifetime significantly
- Test pattern like Burn-In + RGB







→ white becomes yellowish

Background: see White point



## **Color Shifts caused by Differential Ageing of PDP**



Luminance decrease

- White (left, 500 h  $\equiv$  90% incl. blue)
- Blue (right, 500 h = 75%)  $\rightarrow$  yellowish

#### Never use static image for the first 1,000 h of PDPs





## **OLED - Simulation of Burn - In and Differential Ageing**

A. Donath, K. Blankenbach SID ME, 3/2004, Frankfurt

IT

Simulated image

Color difference is the only method for judging Burn-in and Differential Aging

False color acc.
 ∆E (CIELUV)

5





Suitable for evaluation of necessary lifetime and optimization of GUI

ΛE



# **Reduction in 'Useful Lifetime' for Emissive Displays**

Lifetime given in spec:
50.000 h @ 25°C

IT

- ∆E\*<sub>LUV</sub> = 10 is clearly visible for neighboring pixel (100% ON vs. OFF)
- This results in 20,000 h 'useful lifetime' @ 25°C
- Operating at 75°C lowers lifetime by e.g. a factor of 4 down to 5,000 h which is only 10% of spec ! Further reduction by differential ageing.





## Lifetime & MTBF Bathtub Curve

Source: SIEMENS

The Mean Time Between Failures (**MTBF**) is a statistical mean value for error-free operation of an electronic device. The specification of this statistical value in years often leads to it being wrongly interpreted as the **service life** of the component.

#### What is to be understood by service life?

The service life is the time for which the device or component is designed to function. This, therefore, is the time up to the beginning of the wearand-tear phase through a physical law or aging due to chemical reactions. In the case of devices with electromechanical parts (relays), the service life is mainly defined by the number of operations and the load connected.

#### What is to be understood by MTBF?

The MTBF does not apply to an individual component, but is a statistical mean value for the average time between two failures during the normal working life. The higher the MTBF, the less often the component concerned fails and the more reliable it is.



## Lifetime & MTBF Bathtub Curve

Source: SIEMENS

The reciprocal value of the MTBF that is a measure for the reliability of a component is the failure rate  $\lambda$ . Plotting of the statistical failure rate  $\lambda$  over time t gives the bathtub function (bathtub curve).





Falling below 50% of initial luminance is not a failure as the display is still working (with large reduced luminance)



## **Case Study : Lifetime**

• Task

Design "long lasting" display





- Conditions: Indoor, mostly static content, ...
- Solutions:



## **Case Study for Lifetime : Airport Information Display**

- 50", HDTV resolution
- Static images

IT

- Color required
- Operation 20h / 7d indoor
- Calculate operating cost for 10y
- Replacement cost workforce: 1,000 €



|                      | LCD | PDP | Projection |
|----------------------|-----|-----|------------|
| Merits of technology |     |     |            |
| Shortcomings         |     |     |            |
| Depth of display     |     |     |            |



## **Case Study for Lifetime : Airport Information Display**

- 50", HDTV resolution
- Static images

IT

- Color required
- Operation 20h / 7d indoor
- Calculate operating cost for 10y
- Replacement cost workforce: 1,000 €



|                       | LCD | PDP | Projection |
|-----------------------|-----|-----|------------|
| Price                 |     |     |            |
| Useful life time      |     |     |            |
| # of replacements     |     |     |            |
| Cost (display + work) |     |     |            |
| Total                 |     |     |            |



## **Summary Lifetime**

- Lifetime is usually defined as half time luminance (or other parameters)
- Display is not "dead" after reaching lifetime, mostly luminance is reduced
- Caution: Lifetime specified for 25°C and ideal conditions (permanent ON)
- Different pixel ON time and grey level leads to Burn-In or Image Sticking
- Emissive displays change their RGB color by different lifetime of primaries (Differential ageing)
- What do you have taken into account for judging on useful lifetime in real world applications ?
- Noticeable Burn-In or Image sticking can be reduced by lowering display temperature, orbiting (panning), no low grey level background for LCDs, ...

## **Overview**

- Introduction
- Basic Parameters (Merits)



- Some selected topics, others can be also relevant!
- Spatial domain: Uniformity
- Time domain:
  - Life time, burn-in, ...
- Ambient light
- Signal processing (see § TV)
- Display Technology Dependent Issues (Shortcomings)

Summary

Test patterns like § Basic Parameters, mostly Full Screen Contrast Ratio **Electronic Displays** 

DISPLAY LABOR HOCHSCHULE PFORZHEIM



#### Reflections reduce image quality of all display technologies.

Diffuse

DISPLAY LABOR HOCHSCHULE PFORZHEIM

# Reflections on Flat and Curved Displays

Spot



Neon

"Diffuse" illuminance from ceiling or sky is best for reflective displays





## **Displays vs. Ambient Illuminance**

**Reflective LCD** 

#### **Emissive OLED**

100 cd/m<sup>2</sup> in darkroom

800 lx



1 camera shot each



20.000 lx





**Display luminance** is constant but eye (here: camera) adapts to 'mean' illuminance!

Reflective LCD is the right choice for illuminance meters (except for low light).

## What should be the displays Iuminance at high ambient light ?



## "Trimode" TN LCD by PIXEL QI

#### • Trimode =

transmissive + transflective + reflective in one display

- **Benefit**: compromises power consumption and sunlight readability
- Best color in transmissive mode
- Monochrome (incl. grey levels) for reflective mode

Transmissive

Reflective

| Item              | Specification                           |
|-------------------|-----------------------------------------|
| Dimensions        | 10.1" diagonal                          |
|                   | 222.72 x 125.28 mm active area          |
| Display modes     | Transmissive, transflective, reflective |
| Pixel count       | 1024 x 600 color                        |
|                   | 1024 x 3 x 600 black and white          |
| Pixel Pitch       | 0.2175(h) x 0.2088 (v) mm               |
| Pixel density     | 220 ppi                                 |
| White-state       | 24%                                     |
| reflectance       |                                         |
|                   |                                         |
| Contrast ratio    | >100:1                                  |
|                   |                                         |
| Field of view     | ±45°                                    |
| Color gamut       | 45% NTSC                                |
|                   |                                         |
| Refresh rate      | 25 – 60 Hz                              |
| Power consumption | 0.4W – 0.8W, reflective (30Hz, 60Hz)    |
|                   | 1.3W – 1.7W, transflective (30 – 60)    |
|                   | 2.2W – 2.6W transmissive (30 – 60 Hz)   |
| Colors            | 262,144                                 |
| Brightness        | 150 nits                                |



## Trimode TN LCD by PIXEL QI vs. E-INK

- E-INK : monochrome & no video, "no" power
- **PIXEL QI** : monochrome (low power) or color (high power), video



Indoor

E-INK without frontlight but readable

**PIXEL QI** excellent & color (video) but high power (transmissive)

Blankenbach / www.displaylabor.de / Display Metrology / WS 2013

#### Outdoor



#### E-INK higher white reflectivity

PIXEL QI monochrome & low power (reflective)



## **Automotive Display Brightness**

#### **Ambient Brightness on Instrument Cluster**



DISPLAY LABOR HOCHSCHULE PFORZHEIM

## **Parameter: Illuminance /Ix**

Meters starting at 30 € available. Requirements:

•  $V(\lambda)$  corrected like luminance meters

Cosine-shaped sensitivity over angle









## **Display Specs usually refer to Dark Room Conditions !**

How degrade dark room values by ambient light ?

#### Dark room parameters



## **Consequences & Solutions for Readability**

## Readability reduced due to

- Eye adaptation to high illuminance
- Reflections from "bright" environment

**Consequence:** - Reflected luminance adds to display luminance - Reduction of readability (CR, grey scale, gamut)

- Display specifications refer to dark room

- No formula to extrapolate to ambient light behavior

**Solutions:** 

- Rise luminance (but T will thus rise and reducing lifetime)
  - Reduce reflections (filter, optical bonding, location...)
  - Measure ambient light characteristics of displays



## Luminance & Eye Adaptation

#### Approach:

Display should have white luminance like white paper due to eye adaptation:







## **Readability for Bright Ambient Light**

1. Eye adaptation

Display should have white luminance like white paper :

$$L_{Paper}^{Diffuse} = \frac{E}{\pi} \sim \frac{E}{3} \Rightarrow L_{Display} \ge \frac{E}{10}$$
  
Example: E = 10,000 kr  $\Rightarrow$  Lare  $\ge$  1,000 cd/m<sup>2</sup>





## **Examples for C\_R for Diffuse Reflectance of Illumination**

- $r_{\text{System D}} = 0.05$ ;  $r_{\text{Reflector}} = 0.3$
- E = 10,000 lx



100 cd/m<sup>2</sup> indoor

**Emissive** display with  $L_{White} = 100 \text{ cd/m}^2$ :

**r**<sub>Reflector</sub>

$$C_{R}^{\text{Emissive}} \approx \frac{\pi L_{\text{White}}(0 \text{Ix})}{\text{E } r_{\text{System D}}} (+1) = \frac{\pi \cdot 100}{10,000 \cdot 0.05} + 1 \approx 1.61$$
$$(C_{R} = 3.2:1 \text{ for } L_{\text{White}} = 500 \text{ cd/m}^{2})$$

**Reflective** LCD: 
$$C_{R}^{\text{Non-emissive}} \approx \frac{r_{\text{Reflector}}}{r_{\text{System D}}} = \frac{0.3}{0.05} = 6:1$$

Reflective displays are better readable in ambient light then emissive ones !



## **Diffuse Geometry: Reflective E - INK Display**





## **Examples for Contrast Ratio Degradation**



Factor 5 for white luminance,  $L(K) = const. \rightarrow factor \sim 4.7$  in  $C_R$  for ambient light

Factor 5 for black luminance,  $L(W) = const. \rightarrow factor \sim 1.4$  in  $C_R$  for ambient light for  $L_{White} = 100 \text{ cd/m}^2$  and  $L_{White} = 500 \text{ cd/m}^2$ 

Luminance of white has more influence on CR with ambient light than luminance of black and CR under dark room conditions !



## **Examples for Contrast Ratio & Ambient Light**

|                    | Display 1 |  | Projection |
|--------------------|-----------|--|------------|
| Lighting           |           |  |            |
| conditions,        |           |  |            |
| geometry           |           |  |            |
| L <sub>white</sub> |           |  |            |
| L <sub>black</sub> |           |  |            |
| Contrast ratio     |           |  |            |
| Illuminance /Ix    |           |  |            |



## **Basics of Light Reflection**



#### But things are not as easy as it seems !

Example: Glass has index of refraction of about 1.5. This sets, depending on the incident angle, the portion of refraction and reflection. But e.g. a matte glass surface reflects light in all directions (diffuse) !



## **Fundamentals of Reflections for Displays**





Source: E. Kelley, NIST

Lambertian Only All Three



LCD (left) : specular & haze OLED (right) : mainly specular (diffuse with low intensity)



## Luminance Generated by Reflections



All values & parameters depend on

- Light source(s) (angle, spectrum, ...)
- Observer angle, display orientation, ...
- Display characteristics (surface, layers, ...)

#### **Component Characteristics**

| L <sub>Reflected</sub> | Sum of all reflections, could be measured as BRDF ( <u>B</u> idirectional <u>Reflectance Distribution Function</u> , ISO 13406), usually not available from manufacturers |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L <sub>Specular</sub>  | Directed (specular) reflection (incident angle = output angle):<br>"mirror-like" glare-type displays                                                                      |
| L <sub>Haze</sub>      | Experimental value similar to fog, occurs mainly for LCDs                                                                                                                 |
| L <sub>Diffuse</sub>   | Approximation as Lambertian light source: diffuse, matte, anti-glare                                                                                                      |

#### Best description by BRDF but not easy to obtain from measurements



## Luminance Generated by Reflections



- Geometry (angle)
- Reflection coefficient of display





mobile: turn static: "shield"



## Luminance Generated by Reflections Numerical Examples

Formula: 
$$CR \approx \frac{L_{White}}{L_{Reflected}} + 1$$

Values: 
$$-L_{White} = x \text{ cd/m}^2$$
 (display showing white)  
 $-L_{Ambient} = 5,000 \text{ cd/m}^2$  (illuminance  $E \approx 30,000 \text{ lx}$ )

#### **Parameters (here):**

- Perpendicular incidence
- Reflection coefficient r
- $L_{\text{Reflected}} = r \cdot L_{\text{Ambient}}$





## **Recommendations for High Contrast Ratio**

## **Display luminance**

- 1,000 or 300 cd/m<sup>2</sup>
- 1% reflectivity (low!)

⇒ luminance rises CR





## **Reflection Reduction : Optical Bonding**



## **Protection glass or PCAP touch screen in front of display**




# **Summary for Reflection Reduction Methods**



- 1% reflection is required for good outdoor performance
- High white luminance of the display is required
- However most references use perpendicular incidence. Oblique conditions lead to higher reflectivity !
- For touch and/or cover glass use optical bonding
- Resistive touch not good for outdoor

HOCHSCHULE PFORZHEIM

# ISO 15008 for Automotive Evaluation : Geometric Set - Up Daylight Simulation Sunlight Simulation

# 

- Angles acc. geometry of driver
- Large diffuser close to display
- Diffuse light with 3,000 lx at display



- Measuring diffuse and haze reflections for sunlight
- Distant small diffuser close to lamp
- Light with 45,000 lx at display

HOCHSCHULE PFORZHEIM

# **ISO 15008 Sunlight Simulation (I)**









Here:

 $L_{reflected} = 0.0027 E$ 

 $\rightarrow$  r = 0.0085

(≈ 1 %)

 $L_{reflected}$  is proportional to illuminance  $E \rightarrow extra$ polation to other values



# **ISO 15008 Sunlight Simulation (II)**





300

55



## Such measurements are just for comparison

Evaluation in application environment is necessary !



# **ISO 15008 for Automotive Evaluation**

#### 4.3.1 Minimum contrast

The minimum contrast ratio (higher to lower luminance) between symbol and background shall be

- 5:1 for night conditions,
- 3:1 for day conditions, and
- 2:1 for sunlight conditions.

These figures seem to be relatively low, but are difficult to achieve in day- or sunlight !

## **Precautions for High Ambient Light Measurements**

## Enormous heat can be generated by lamps - display can be damaged!

- Use IR-blocker or LED lamps and measure temperature at the surface of the display, ventilators are strongly recommended.
- LCDs are critical due to polarizer and clearing temperature  $T_{cl}$ , other displays can be also sensitive.



1,000 W light source applied for 30s



White areas of LCD are above  $T_{cl}$ 



# **Grey Shades under Diffuse Ambient Light**





# Ambient Light & Grey Scale





# **Ambient Light & Color**

- Reflections on display reduce color gamut
- Color co-ordinates (of the primaries) were shifted towards the co-ordinates of the light source
- Numerical exercise:
  Calculate color shift using Tristimulus and 10 cd/m<sup>2</sup>, ... 1,000 cd/m<sup>2</sup> white reflected luminance





# **Reflection Reduction Methods (I)**



Normal

~ 5% reflection for perpendicular incidence





Specular  $\rightarrow$  diffuse

Anti-Reflex



Specular reduced



# **Reflection Reduction Methods (II)**

### ,Original without anything'





Anti-Glare

(specular  $\rightarrow$  diffuse)





## **Anti-Reflex**

(specular reduced)

**Anti-Glare + Anti-Reflex** 

('best' + most expensive)

DISPLAY LABOR HOCHSCHULE PFORZHEIM

# **Reflection Reduction Methods (III)**

AR



AG



#### **Notch - Filter**





# **Reflection Reduction Methods (IV)**

**Display Placement:** 

## Mobile displays

Mostly not critical as "turned by user" to reduce most bright specular reflections but certain luminance is required due to eye adaptation

- **Display installations** like airport, e-signage
  - Display cannot be oriented to reduce bright reflections as observer – display geometry cannot be changed
  - Light reflections can be reduced by louvers etc.





Source: EIZO

## Ambient light enables only LED and reflective displays for outdoors



# **AM LCDs: Ambient Light & Reflections**





# Ambient Light Reflections vs Grey Level & Visibility



Reflections are 'enhanced' on dark areas and 'invisible' for 'bright' areas'

Same display, geometry, illumination etc.





# **Case Study : Ambient Light**

• Task

Design "readable" display



- Conditions: Ambient light, display location, "light from everywhere", ...
- Solutions:



# **Summary & Questions**

IT

- Ambient light measurements are difficult to perform
- Illuminance measurements are standardisized but usefulness to real world is limited. However displays can be compared by standards procedures.
- Ambient light calculations can easily be done for projection (diffuse screen)
- Ambient light degrades all dark room parameters
- Why is illuminance for specular relative low ?
- Types of reflections, parameters, ... ?
- Why is the reflected luminance proportional to the illuminance ? Are there limits ?
- Which display has a better performance in bright light :
  - Low max. luminance and superb AR + AG
  - High max. Iuminance but standard reflection reduction ?
- LCD of E-Signage at elevator 'sparkles'. What is that and reason why?

HOCHSCHULE PFORZHEIM

## **Overview**

Some selected topics, others - including for other display technologies - can be also relevant!

- Introduction
- Basic Parameters (Merits)
- LCD: Response time, viewing angle
- PDP: Loading, false contour

Common Issues

Display Technology Dependent Issues (Shortcomings)

• Summary

## Response, Rise and Fall Time (Switching Time, Speed)



"Response time" is also often used for rise or fall time.

> The "standard" definition for rise 10% - 90% and 90% - 10% for fall is used.

However for LCDs, raise and fall time might not be the same. Furthermore, the rise and fall time depend on the "jump" from initial

to final grey level (s.b.).

This is called G2G response time.



# **Switching Time Measurements**





# **LCDs** : Response Time Effects

**Temperature dependent !** 

Ta=25°C,  $f_v$  =60Hz,VCC=3.3V

| ltem          | Symbol     | Condition  | Min. | Тур. | Max. | Unit | Remarks |  |
|---------------|------------|------------|------|------|------|------|---------|--|
| Response Time | Rise(Ton)  | / =0° 0 =0 | -    | 15   | -    |      | Note 4  |  |
|               | Fall(Toff) | φ=0,θ=0    | -    | 10   | -    | ms   |         |  |
|               | T an(TOT)  |            |      | 10   |      |      |         |  |

Only  $K \rightarrow W$  (rising) and  $W \rightarrow K$  (falling) is given, values are different !



Pixel per frame ,Visible' response time Scroll direction No ,visible' response time OCB



# **LCDs** : Response Time Effects



| Grey level transition | T <sub>Rise</sub> /ms | T <sub>Fall</sub><br>/ms |  |  |
|-----------------------|-----------------------|--------------------------|--|--|
| 0⇔ 255                | 20                    | 9                        |  |  |
| 110 ↔ 192             | 32                    | 24                       |  |  |
| 170 ↔ 215             | 23                    | 19                       |  |  |

T > frame time (16.7 ms)

•  $T_{Rise} > T_{Fall}$ 

• T = T(grey 1  $\rightarrow$  grey 2)

Grey level & color shifts !



# Moving Picture Response Time (MPRT) : Visual Assessment



Bar with 9 GLs







# **Moving Picture Response Time (MPRT)**

## Blur (or Brightness) Edge Width



Measurement setup:

Camera and screen (one moving, one fixed)

#### VESA

- GL 0, 6, 18, 36, 63 and 100% (equidistant in lightness)
- Measure  $GL_i$  to  $GL_j$  for all  $i \neq j$
- 10% to 90% <u>B</u>lur-<u>e</u>dge <u>w</u>idth b<sub>ij</sub> (in units of pixels)
- Extended BEW  $w_{ij} = b_{ij} / 0.8$
- MPRT (seconds) with
  N: number of i ≠ j transitions, here 30
  - u: speed (pixels per frame time)

$$MPRT = \frac{1}{u N} \sum_{i \neq j} w_{ij}$$

LCD TV : MPRT  $\approx$  25 ms  $\approx$  2.5 T<sub>R</sub>



# **Visual inspection of Response Time**

... with PIXPERAN by Wilfried Welti



Original



 $T_{rise} = T_{fall} = 2 \text{ ms}$ 



Motion blur by hold-type display

```
T_{rise} = T_{fall} = 5 \text{ ms}
```



 $T_{rise} = T_{fall} = 10 \text{ ms}$ 



 $T_{rise} = T_{fall} = 20 \text{ ms}$ 



 $T_{rise} = T_{fall} = 50 \text{ ms}$ 

Improvement by blinking backlight or Black Frame Insertion (see AM Driving)



# **Measurement of Grey – To – Grey LCD Response Time**



HOCHSCHULE PFORZHEIM

# **Temperature Dependency of LCD Response Time**





# **Summary & Questions**

- Response time is mostly given for K → W and W → K.
  This is especially for LCDs misleading why ?
- Response time of LCDs depend on ....
- What are the reasons for motion blur and how can that reduced ? Search in internet.
- (Test your LCD monitor for flicker.)

HOCHSCHULE PFORZHEIM

## **Overview**

Some selected topics, others - including for other display technologies - can be also relevant!

- Introduction
- Basic Parameters (Merits)
- LCD: Response time, viewing angle
- PDP: Loading, false contour

Common Issues

Display Technology Dependent Issues (Shortcomings)

• Summary



# **LCDs Viewing Angle Examples**



# ABCDEFGHIJKLMNOP abcdefshijklmnop

#### ABCDEFGHIJKLMNOP abcdef9hijk1mnop

### Color inversion !

0

Ε

D







# **Example from LCD – Specification / Data Sheet**

## Threshold definition

| Parameter |                             | Symbol | Condition |                                               | Min. | Typ. | Max. | Unit |
|-----------|-----------------------------|--------|-----------|-----------------------------------------------|------|------|------|------|
| Viewing   | Horizontal<br>Ngle Vertical | Øx+    | CR        | >10, Øy = ±0°                                 | -    | 60   | -    | deg. |
|           |                             | Øx-    | CR        | >10, Øy = ±0°                                 | -    | 60   | -    | deg. |
| Angle     |                             | Øy+    | CR        | >10, $\varnothing \mathbf{x} = \pm 0^{\circ}$ | -    | 45   | -    | deg. |
|           |                             | Øy-    | CR        | >10, $\varnothing \mathbf{x} = \pm 0^{\circ}$ | -    | 50   | -    | deg. |

## Viewing angle is a threshold definition:

- The maximum CR is about 500:1
- "Viewing angle" is provided for 10:1
- CR do not represent grey scale and color degradations !





# **Definition of Viewing Angle**



## **Definition:**

- $\Phi$  = 6:00 (6 o'clock, 6OK) : calculator, watch, smartphone, bus, ...
- $\Phi$  = 12:00 : Laptop, automotive CID, vending machines, ...



# **Viewing Angle Measurement Set-ups**





Better but costly: all viewing angle as iso plot (iso = lines of constant L or CR, ...)





# **Viewing Angle Overview**

- Methods for measuring and chart
  - 2D
  - 3D
- Measurements (full screen, patterns see § Basic Parameters)
  - Luminance
  - Contrast ratio
  - Grey scale
  - Color

## • Visual inspection:







# **Viewing Angle Measurement Set-ups: Gonioscopic**


DISPLAY LABOR Hochschule pforzheim

# **2D** Luminance Dependency of Horizontal Viewing Angle





# **2D** Contrast Ratio Dependency from Viewing Angle of LCD



Specify viewing angle only with the minimum contrast ratio (or better color difference  $\Delta E$ ) here : 40° @  $C_R > 100 : 1$  ; 70° @  $C_R > 50 : 1$  ; 125° @  $C_R > 20 : 1$  ; ??° @  $C_R > 5 : 1$ 

HOCHSCHULE PFORZHEIM

### **2D** Contrast Ratio Dependency of Horizontal Viewing Angle



PDP shows "no dependency" as luminance for black and white has the same angular characteristic



#### **Remarks**

- If the sign doesn't change and luminance levels only merge, the image quality is horrible, but grey scale inversion doesn't 'occur' in meaning of standard (norm)
- Contrast inversion is the extreme case of grey scale inversion, when maximum and minimum luminance levels change



# **2D Grey Scale Dependency**

AMLCD 12", horizontal

### Luminance (GS) vs. Viewing Angle





# **2D Grey Scale Dependency**

Gamma (GL) vs. Viewing Angle

AMLCD 12", horizontal





# **2D** Colour Wash Out











Electro-optical curve changes with viewing angle!

DISPLAY LABOR HOCHSCHULE PFORZHEIM

# **2D** Colour Change with Viewing Angle

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.     | All of Sector period   |                    | I            | alli                           | 11               | -    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|--------------------|--------------|--------------------------------|------------------|------|
| ł, | Plag such über plann anvärta Schulter Aug. Bemerkungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0     |                        | Abti               | ug departure |                                | Aung Demethungen | 65   |
|    | -K638300   Henes    -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 001121  |                        |                    |              |                                |                  |      |
|    | 09 214 Nien Leipzig 19 19 25 19 25 21 -20 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40 2021 | Cluitgeri              |                    |              | 00:15 27-30                    |                  |      |
| h  | LH 1077 Hönsten<br>C9 1007 Kasburg<br>19:45 19:45 21-20 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LN 1052 | Frankfurt<br>Gosselder |                    |              | 00:35 21-28                    |                  | 5    |
| ł  | Lii 9400 Hasburg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | La los  | I Hûnshen I I          |                    |              | 00:50 21-20                    |                  |      |
| Į. | 40 2023 Stullgert 20:05 20:05 27-20 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00 210  |                        |                    |              | 00115 21-20                    |                  |      |
| 1  | 40 025 Köln-Benn 20:10 27-20 00<br>LH 007 Dösselderi 20:45 20:45 21:25 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TU 0021 | Henes I ie<br>Kûnshen  |                    |              | 00:40 02-10                    | 02 01.01.11.     |      |
|    | 00 217 Loipzig/Nolio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | Tenerille              | iter i tet i i i i |              | 6 10:45 03-10                  |                  | 11 7 |
|    | AD 0005 Dessolder1 07:00 07:00 02:10 02:10 01:11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO 2000 | Les Pelse              |                    |              | 6 10150 21-20<br>5 12115 03-10 |                  |      |
| ł  | LJ 1007 Nonchan 07:05 07:09 21-20 00 01:01 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z#X 840 | Retelye                |                    |              |                                | 0 02 01.11.      |      |
| L  | L# 6366   # ien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LH 1071 | Nünchen                |                    |              | 10155 21-2                     |                  |      |
| 2  | NUMBER OF STREET, STRE | -       |                        | And Inc.           | TELEVIS      |                                |                  | 1    |

LCD









# **2D** Color Inversion of LCDs

Measurement procedure similar to grey scale inversion



### Example



DISPLAY LABOR HOCHSCHULE PFORZHEIM

# **2D** Angular Measurements: Luminance & Color







# **Colour Change with Viewing Angle**





# **Viewing Angle Measurement Set-ups: Gonioscopic**



- 3D plots (see conoscopic)
   Needs long time
  - Expensive mechanical set-up for large displays



# Viewing Angle Measurement Set-ups: Conoscopic



# **Viewing Angle Measurement Set-ups: Conoscopic**



- All viewing angles are captured in one shot
- Iso-plots (iso = lines of constant L or CR, ...)







# **3D** Angular Emission of LED Luminance

"Oval" characteristic "good" for LED walls as vertical observer positions differ mostly not largely compared to horizontal positions.





# **3D** Iso - Luminance Plots



Black



White





### **Display A is better because of**

- Larger area with nearly constant contrast ratio for perpendicular incidence
- Larger maximum contrast ratio

In both cases a 6:00 observer position with  $\theta \approx$  15° is recommended



# **3D** Contrast Ratio vs. Grey Scale Performance



Contrast Ratio values are misleading here because a reduction of 'only' 2 (400  $\rightarrow$  200) occurs but the grey level reproduction is completely vanished or inverted (flat curve, blue) compared to perpendicular incidence (OK, brown)  $\rightarrow$  no grey shades visible for 20° off !

DISPLAY LABOR HOCHSCHULE PFORZHEIM

# **3D** Color Dependency from Viewing Angle of LCDs



Measured color representation, black was shown on the screen !



12:00 Contrast and color inversion ! 6:00





# **Playing with Viewing Angle**

... for increasing viewing angle of LCDs





# **Playing with Viewing Angle**

... for special applications like CID



Vikuiti" Inverted BEF Film (IBEF) splits the backlight distribution towards off axis viewers



# Other filters limit viewing angel like for ATMs privacy.





# **Dual View LCD**

- 2 different images for 2 viewers
- Application e.g. center information display (CID)

driver: navigation, co-driver: video; introduced as Split View by MERCEDES



Some thesis by Pforzheim ET students were made on this topic helping to implement this technology with high quality.



# **Case Study : Viewing Angle**

- Task
  - Design "valuable" display



- Conditions: Indoor, "brand" colors, "TV display", ...
- Solutions:



# **Summary & Questions**

IT

- Viewing angle degradation affect all display technologies, however the largest effects occur for LCDs
- Viewing angle values are threshold ones which are often defined by panel producer.
- 'Inversion free' (grey level, color) seems to be great but grey levels and colors can merge closely so that performance is strongly degraded
- 2D scans (horizontal or vertical) are easy to perform but sometimes of limited relevance
- 3D plots are more valuable
- Viewing angle dependencies are 'forced' in some applications.
   Name a few and explain them.
- OLEDs are emissive technologies which should show now viewing angle dependency. Explain the effects which cause that.



# Summary "LCD related Issues"



- Issue of LCDs and e-paper
- T-dependant

Rel. L

 Emissive displays are minor affected Viewing angle

- Degradation of image quality
- CR not useful, better: GS, color



### "To do"

 Measure under conditions which are typical for your application

HOCHSCHULE PFORZHEIM

# **Overview**

Some selected topics, others - including for other display technologies - can be also relevant!

- Introduction
- Basic Parameters (Merits)
- LCD: Response time, viewing angle
- PDP: Loading, false contour

Common Issues

Display Technology Dependent Issues (Shortcomings)

• Summary



# **PDP Power Management**

**Definition**: Peak-white is highest luminance at stable power consumption Commonly used in standard displays: CRT, PDP...



### Suits very well to the human visual system





# **Summary & Questions**

- Luminance output of PDPs are influenced by grey levels and their area.
- Full white luminance is about a factor of 5 ... 10 lower than 1% highlight.
- PDP luminance limitation prevents somewhat from burn-in and saves power supply efforts
- White images for PDPs are not recommended for ambient light applications
- (Signal processing is difficult for PDPs due to sub-frames)
- Why are PDPs supposed to be ideal for home cinema?



# **Overview**

- Introduction
- Basic Parameters (Merits)
- Common Issues
- Display Technology Dependent Issues (Shortcomings)



Summary



# **Touch Tasks**



# Acquire Touch position "here" Number of touches (fingers)

• Gestures, ...

Equipment etc. needed:

- Software to visualize GUI etc and outputs (to e.g. file) touch parameters like co-ordinates
- High speed camera for touch events lag measurements or equipment similar to response time measurements
- Touch objects



# **Touch TOUCH POSITION ACCURACY**

- Simple test for controls etc.
- 5 or more point can be used,
  "same" as uniformity
- Touch co-ordinates should be located in the center of the circles
- Use software which shows buttons, circles, ... and outputs the touch co-ordinates X/Y
- To be judged: Co-ordinate in the center of control if touched there





# **Touch LINEAR ACCURACY**

- Deviations from straight line, usually 4
- Move touch object along ruler
- Use "normal" speed
- Software stores touch co-ordinates
- Report on deviations:
  - Average deviation (difference)
  - Maximum difference
- To be defined:

Acceptable deviations





# **Touch REACTION TIME: LATENCY OF A SINGLE TOUCH**

- Measure how fast the whole system reacts on a touch event
- This duration is influenced by many parameters like response time of touch, touch signal processing, touch interface, operating system response time, ...







# **Touch REACTION TIME: LATENCY OF A LATERAL MOTION**

- Measure the latency time between the input and the system reaction
- Similar measurement: Fastest movement of touch object without noticeable latency between touch position and system reaction like curve
- This time is influenced by many parameters like response time of touch, touch signal processing, touch interface, operating system response time, ...



Source: IDMS



# **Touch Summary**

- Typical touch measurements are:
  - Position
  - Number of touch objects
  - Accuracy of lines
  - Speed
- There are a lot more like sensitivity to touch objects (like gloves), cover lens thickness, dust and dirt on touch screen
- Especially "speed" (and gesture) strongly depends on system reaction time where touch screen parameters are only a few among many influencing topics.



# **Overview**

- Introduction
- Basic Parameters (Merits)
- Common Issues
- Display Technology Dependent Issues (Shortcomings)


DISPLAY LABOR HOCHSCHULE PFORZHEIM

### **Parameters Affecting Measurements & Visual Perception**



Blankenbach / www.displaylabor.de / Display Metrology / WS 2013



## Summary (I)



- Many standard measurement procedures
- Data sheets and specifications enable evaluation of a display for a specific application

# Shortcomings of display metrology

- Degradations can occur due to various conditions
  - Environmental (ambient light, temperature, ...)
  - Application (lifetime, static and moving content, ...)



- Data sheets refer often to parameters which are not applicable to applications like dark room, 25°C, permanent ON, ...
- Vision sees things that measurement can't capture and vice versa



### **Summary Metrology**

- Evaluation is performed by measurements and visual inspection.
- "Limited data in specs" (e.g. 25°C, dark room) forces application specific measurements 
  ⇒ select carefully the most relevant measurements.
- Fundamental measurements ("Fab 4"): Luminance, Contrast Ratio, Grey Scale & Color
- Most relevant measurements for evaluation:

Ambient light, lifetime, viewing angle, response time



### **Overview of Standards** ... also: SID ICMD IDMS (but no offiicial standard)

- ANSI: American National Standards Institute (www.ansi.org)
- ASTM: American Society for Testing and Materials (www.astm.org)
- CIE: Commission Internationale de l'Eclairage (www.cie.co.at)
- DIN: Deutsches Institut für Normung (www.din.de)

IT

- EIA: Electronics Industries Association (www.eia.org)
- International Committee for Display Metrology SID (www.icdm-sid.org)
- IEC: International Electrotechnical Committee (www.iec.ch)
- IEEE: Institute of Electrical and Electronics Engineers (www.ieee.org)
- ISO: International Organization for Standardization (www.iso.org)
- ITU: International Telecommunication Union (www.itu.int)
- JEITA: Japan Electronics and IT Industries Association (www.jeita.or.jp/english/)
- NEMA/DICOM: National Electrical Manufacturers Association/Digital Imaging and Communications in Medicine (DICOM) (www.medical.nema.org)
- SAE: Society of Automotive Engineers (www.sae.org)
- SMPTE: Society of Motion Picture and Television Engineers (www.smpte.org)
- SPIE: Society of Photo-Optical Instrumentation Engineers (www.spie.org)
- TCO 92 TCO 07 Swedish Confederation of Professional Employees
- VESA: Video Electronics Standards Association (www.vesa.org)



# **Overview of Standards**

IT

- ISO 9241 Ergonomic requirements for office work with visual display terminals (VDTs); new: Ergonomics of Human System Interaction
- ISO 13406 Ergonomic requirements for work with visual displays based on flat panels. Part 2:Ergonomic requirements for flat panel displays
- IEC 61747 Liquid crystal and solid-state display devices. Environmental, endurance, and mechanical test methods
- ISO 15008 Road vehicles Ergonomic aspects of transport information and control systems – Specifications and test procedures for in-vehicle visual presentation
- CECC 20000 Harmonized system of quality assessment for electronic components: Generic specification: Semiconductor optoelectronic and liquid crystal devices
- IEC 62341 Organic light emitting diode (OLED) displays
- IEC TC 100 Audio, video, and multimedia equipment and systems
  - TC 110 Flat panel display devices
  - TC 159 Ergonomics
- IEC 61988 Plasma display panels
- CIE 44 Absolute methods for reflection measurement
- SAE J1757-1 Standard metrology for vehicular displays
- EU 642/2009 Power consumption of monitors and TV sets

Blankenbach / www.displaylabor.de / Display Metrology / WS 2013



#### **ISO 9241**

The standard ISO 9241 covers many tasks for human interaction with computers including software, and input and output devices such as displays:

- Part 300: Introduction to electronic visual display requirements
- Part 302: Terminology for electronic visual displays
- Part 303: Requirements for electronic visual displays
- Part 304: User performance test methods for electronic visual displays
- Part 305: Optical laboratory test methods for electronic visual displays
- Part 306: Field assessment methods for electronic visual displays
- Part 307: Analysis and compliance test methods for electronic visual displays
- Part 308: Surface-conduction electron-emitter displays (SED)
- Part 309: Organic light-emitting diode (OLED) displays



#### **IEC TC100**

The IEC TC100 has the following technical areas (TAs):

- TA 1 : Terminals for audio, video, and data services and contents
- TA 2 : Color measurement and management
- TA 4 : Digital system interfaces and protocols
- TA 5 : Cable networks for TV signals, sound signals, and interactive services
- TA 6 : Higher data rate storage media, data structures, and equipment
- TA 7 : Moderate data rate storage media, equipment, and systems
- TA 8 : Multimedia home server systems
- TA 9 : Audio, video, and multimedia applications for end-user networks
- TA 10 : Multimedia e-publishing and e-book